Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Diagnostics (Basel) ; 12(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054329

RESUMO

Representative, actively collected surveillance data on asymptomatic SARS-CoV-2 infections in primary schoolchildren remain scarce. We evaluated the feasibility of a saliva mass screening concept and assessed infectious activity in primary schools. During a 10-week period from 3 March to 21 May 2021, schoolchildren and staff from 17 primary schools in Munich participated in the sentinel surveillance, cohort study. Participants were tested using the Salivette® system, testing was supervised by trained school staff, and samples were processed via reverse transcription quantitative polymerase chain reaction (RT-qPCR). We included 4433 participants: 3752 children (median age, 8 [range, 6-13] years; 1926 girls [51%]) and 681 staff members (median age, 41 [range, 14-71] years; 592 women [87%]). In total, 23,905 samples were processed (4640 from staff), with participants representing 8.3% of all primary schoolchildren in Munich. Only eight cases were detected: Five out of 3752 participating children (0.13%) and three out of 681 staff members (0.44%). There were no secondary cases. In conclusion, supervised Salivette® self-sampling was feasible, reliable, and safe and thus constituted an ideal method for SARS-CoV-2 mass screenings in primary schoolchildren. Our findings suggest that infectious activity among asymptomatic primary schoolchildren and staff was low. Primary schools appear to continue to play a minor role in the spread of SARS-CoV-2 despite high community incidence rates.

2.
PLoS One ; 13(11): e0207250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440012

RESUMO

Very long intergenic non-coding RNAs (vlincRNAs) are a novel class of long transcripts (~50 kb to 1 Mb) with cell type- or cancer-specific expression. We report the discovery and characterization of 256 vlincRNAs from a cohort of 64 primary childhood pre-B and pre-T acute lymphoblastic leukemia (cALL) samples, of which 61% are novel and specifically expressed in cALL. Validation was performed in 35 pre-B and pre-T cALL primary samples. We show that their expression is cALL immunophenotype and molecular subtype-specific and correlated with epigenetic modifications on their promoters, much like protein-coding genes. While the biological functions of these vlincRNAs are still unknown, our results suggest they could play a role in cALL etiology or progression.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , RNA Longo não Codificante/metabolismo , Adolescente , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , RNA Longo não Codificante/genética , Transcriptoma
3.
BMC Genomics ; 18(1): 214, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245871

RESUMO

BACKGROUND: A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). RESULTS: To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. CONCLUSIONS: Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.


Assuntos
Sequência Conservada , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Primatas/genética , RNA não Traduzido/genética , Células-Tronco/metabolismo , Animais , Genômica , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Especificidade da Espécie
4.
Nat Commun ; 7: 13555, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27898055

RESUMO

The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.


Assuntos
Metilação de DNA/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Ilhas de CpG/genética , Sangue Fetal/metabolismo , Humanos , Anotação de Sequência Molecular , Fatores de Tempo , Gêmeos Monozigóticos/genética
5.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863251

RESUMO

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Assuntos
Epigenômica , Doenças do Sistema Imunitário/genética , Monócitos/metabolismo , Neutrófilos/metabolismo , Linfócitos T/metabolismo , Transcrição Gênica , Adulto , Idoso , Processamento Alternativo , Feminino , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/metabolismo , Código das Histonas , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Adulto Jovem
6.
Epigenomics ; 8(10): 1367-1387, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27552300

RESUMO

AIM: To identify regions of aberrant DNA methylation in acute lymphoblastic leukemia (ALL) cells of different subtypes on a genome-wide scale. MATERIALS & METHODS: Whole-genome bisulfite sequencing (WGBS) was used to determine the DNA methylation levels in cells from four pediatric ALL patients of different subtypes. The findings were confirmed by 450k DNA methylation arrays in a large patient set. RESULTS: Compared with mature B or T cells WGBS detected on average 82,000 differentially methylated regions per patient. Differentially methylated regions are enriched to CpG poor regions, active enhancers and transcriptional start sites. We also identified approximately 8000 CpG islands with variable intermediate DNA methylation that seems to occur as a result of stochastic de novo methylation. CONCLUSION: WGBS provides an unbiased view and novel insights into the DNA methylome of ALL cells.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino
7.
Genome Biol ; 16: 290, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26699896

RESUMO

BACKGROUND: CpG methylation variation is involved in human trait formation and disease susceptibility. Analyses within populations have been biased towards CpG-dense regions through the application of targeted arrays. We generate whole-genome bisulfite sequencing data for approximately 30 adipose and blood samples from monozygotic and dizygotic twins for the characterization of non-genetic and genetic effects at single-site resolution. RESULTS: Purely invariable CpGs display a bimodal distribution with enrichment of unmethylated CpGs and depletion of fully methylated CpGs in promoter and enhancer regions. Population-variable CpGs account for approximately 15-20 % of total CpGs per tissue, are enriched in enhancer-associated regions and depleted in promoters, and single nucleotide polymorphisms at CpGs are a frequent confounder of extreme methylation variation. Differential methylation is primarily non-genetic in origin, with non-shared environment accounting for most of the variance. These non-genetic effects are mainly tissue-specific. Tobacco smoking is associated with differential methylation in blood with no evidence of this exposure impacting cell counts. Opposite to non-genetic effects, genetic effects of CpG methylation are shared across tissues and thus limit inter-tissue epigenetic drift. CpH methylation is rare, and shows similar characteristics of variation patterns as CpGs. CONCLUSIONS: Our study highlights the utility of low pass whole-genome bisulfite sequencing in identifying methylome variation beyond promoter regions, and suggests that targeting the population dynamic methylome of tissues requires assessment of understudied intergenic CpGs distal to gene promoters to reveal the full extent of inter-individual variation.


Assuntos
Metilação de DNA , Interação Gene-Ambiente , Variação Genética , Genoma Humano , Tecido Adiposo/metabolismo , Sangue/metabolismo , Ilhas de CpG , Feminino , Humanos , Fumar/genética , Gêmeos Dizigóticos , Gêmeos Monozigóticos
8.
Genome Biol ; 16: 142, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26185018

RESUMO

Large-scale epigenome mapping by the NIH Roadmap Epigenomics Project, the ENCODE Consortium and the International Human Epigenome Consortium (IHEC) produces genome-wide DNA methylation data at one base-pair resolution. We examine how such data can be made open-access while balancing appropriate interpretation and genomic privacy. We propose guidelines for data release that both reduce ambiguity in the interpretation of open-access data and limit immediate access to genetic variation data that are made available through controlled access.


Assuntos
Epigenômica , Privacidade Genética , Metilação de DNA , Anonimização de Dados , Epigênese Genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
10.
Nat Commun ; 6: 7211, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26021296

RESUMO

Most genome-wide methylation studies (EWAS) of multifactorial disease traits use targeted arrays or enrichment methodologies preferentially covering CpG-dense regions, to characterize sufficiently large samples. To overcome this limitation, we present here a new customizable, cost-effective approach, methylC-capture sequencing (MCC-Seq), for sequencing functional methylomes, while simultaneously providing genetic variation information. To illustrate MCC-Seq, we use whole-genome bisulfite sequencing on adipose tissue (AT) samples and public databases to design AT-specific panels. We establish its efficiency for high-density interrogation of methylome variability by systematic comparisons with other approaches and demonstrate its applicability by identifying novel methylation variation within enhancers strongly correlated to plasma triglyceride and HDL-cholesterol, including at CD36. Our more comprehensive AT panel assesses tissue methylation and genotypes in parallel at ∼4 and ∼3 M sites, respectively. Our study demonstrates that MCC-Seq provides comparable accuracy to alternative approaches but enables more efficient cataloguing of functional and disease-relevant epigenetic and genetic variants for large-scale EWAS.


Assuntos
Tecido Adiposo/metabolismo , Antígenos CD36/genética , HDL-Colesterol/sangue , Metilação de DNA , Epigênese Genética , Triglicerídeos/sangue , Antígenos CD36/metabolismo , HDL-Colesterol/genética , Ilhas de CpG , Elementos Facilitadores Genéticos , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Triglicerídeos/genética
11.
Nature ; 520(7549): 670-674, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25707804

RESUMO

Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations--with a meta-analysis false discovery rate less than 10(-4)--between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmed that methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Estudos de Associação Genética , Genoma Humano/genética , Imunoglobulina E/sangue , Adolescente , Adulto , Asma/sangue , Asma/genética , Criança , Ilhas de CpG/genética , Eosinófilos/citologia , Eosinófilos/metabolismo , Feminino , Humanos , Mediadores da Inflamação , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética , Adulto Jovem
12.
Genome Biol ; 15(2): R37, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24555846

RESUMO

BACKGROUND: DNA methylation plays an essential role in the regulation of gene expression. While its presence near the transcription start site of a gene has been associated with reduced expression, the variation in methylation levels across individuals, its environmental or genetic causes, and its association with gene expression remain poorly understood. RESULTS: We report the joint analysis of sequence variants, gene expression and DNA methylation in primary fibroblast samples derived from a set of 62 unrelated individuals. Approximately 2% of the most variable CpG sites are mappable in cis to sequence variation, usually within 5 kb. Via eQTL analysis with microarray data combined with mapping of allelic expression regions, we obtained a set of 2,770 regions mappable in cis to sequence variation. In 9.5% of these expressed regions, an associated SNP was also a methylation QTL. Methylation and gene expression are often correlated without direct discernible involvement of sequence variation, but not always in the expected direction of negative for promoter CpGs and positive for gene-body CpGs. Population-level correlation between methylation and expression is strongest in a subset of developmentally significant genes, including all four HOX clusters. The presence and sign of this correlation are best predicted using specific chromatin marks rather than position of the CpG site with respect to the gene. CONCLUSIONS: Our results indicate a wide variety of relationships between gene expression, DNA methylation and sequence variation in untransformed adult human fibroblasts, with considerable involvement of chromatin features and some discernible involvement of sequence variation.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Locos de Características Quantitativas/genética , Proliferação de Células/genética , Cromatina/genética , Ilhas de CpG/genética , Fibroblastos/citologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células
13.
Nat Genet ; 46(1): 39-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316981

RESUMO

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19 , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Humanos , Masculino , Isoformas de Proteínas , Proteína p130 Retinoblastoma-Like/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Am J Hum Genet ; 93(5): 876-90, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24183450

RESUMO

Epigenetic modifications such as DNA methylation play a key role in gene regulation and disease susceptibility. However, little is known about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environmental factors. We utilized the Multiple Tissue Human Expression Resource (MuTHER) and generated Illumina 450K adipose methylome data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that DNA methylation variation was highly heritable (h(2)median = 0.34) and that shared environmental effects correlated with metabolic phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we found that 6% of the loci played a role in regulating both gene expression and DNA methylation. These associations were bidirectional, but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results showed widespread population invariability yet sequence dependence on adipose DNA methylation but that incorporating maps of regulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner.


Assuntos
Tecido Adiposo , Metilação de DNA , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Índice de Massa Corporal , Mapeamento Cromossômico , Epigenômica , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Humano , Humanos , Hibridização Genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Locos de Características Quantitativas , Análise de Sequência de DNA , Sulfitos/metabolismo , Gêmeos/genética
15.
Genome Biol ; 14(9): r105, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24063430

RESUMO

BACKGROUND: Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood. RESULTS: We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. CONCLUSIONS: Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment.


Assuntos
Cromatina/metabolismo , Aberrações Cromossômicas , Metilação de DNA , Genoma Humano , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Antineoplásicos/uso terapêutico , Criança , Pré-Escolar , Cromatina/química , Ilhas de CpG , Intervalo Livre de Doença , Elementos Facilitadores Genéticos , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Regiões Promotoras Genéticas , Recidiva , Risco
16.
Cancer Res ; 73(14): 4323-36, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722552

RESUMO

B-cell precursor acute lymphoblastic leukemia (pre-B ALL) is the most common pediatric cancer. Although the genetic determinants underlying disease onset remain unclear, epigenetic modifications including DNA methylation are suggested to contribute significantly to leukemogenesis. Using the Illumina 450K array, we assessed DNA methylation in matched tumor-normal samples of 46 childhood patients with pre-B ALL, extending single CpG-site resolution analysis of the pre-B ALL methylome beyond CpG-islands (CGI). Unsupervised hierarchical clustering of CpG-site neighborhood, gene, or microRNA (miRNA) gene-associated methylation levels separated the tumor cohort according to major pre-B ALL subtypes, and methylation in CGIs, CGI shores, and in regions around the transcription start site was found to significantly correlate with transcript expression. Focusing on samples carrying the t(12;21) ETV6-RUNX1 fusion, we identified 119 subtype-specific high-confidence marker CpG-loci. Pathway analyses linked the CpG-loci-associated genes with hematopoiesis and cancer. Further integration with whole-transcriptome data showed the effects of methylation on expression of 17 potential drivers of leukemogenesis. Independent validation of array methylation and sequencing-derived transcript expression with Sequenom Epityper technology and real-time quantitative reverse transcriptase PCR, respectively, indicates more than 80% empirical accuracy of our genome-wide findings. In summary, genome-wide DNA methylation profiling enabled us to separate pre-B ALL according to major subtypes, to map epigenetic biomarkers specific for the t(12;21) subtype, and through a combined methylome and transcriptome approach to identify downstream effects on candidate drivers of leukemogenesis.


Assuntos
Metilação de DNA , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transcriptoma , Adolescente , Criança , Pré-Escolar , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Ilhas de CpG , Epigênese Genética , Feminino , Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Sítio de Iniciação de Transcrição
17.
Acta Neuropathol ; 125(5): 659-69, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417712

RESUMO

Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Mutação/genética , Adolescente , Adulto , Fatores Etários , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Criança , Estudos de Coortes , Exoma , Glioma/metabolismo , Glioma/patologia , Histona Metiltransferases , Humanos , Lactente , Metilação , Pessoa de Meia-Idade , Gradação de Tumores , Adulto Jovem
18.
Genome Res ; 23(3): 419-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23222848

RESUMO

One of the most rapidly evolving genes in humans, PRDM9, is a key determinant of the distribution of meiotic recombination events. Mutations in this meiotic-specific gene have previously been associated with male infertility in humans and recent studies suggest that PRDM9 may be involved in pathological genomic rearrangements. In studying genomes from families with children affected by B-cell precursor acute lymphoblastic leukemia (B-ALL), we characterized meiotic recombination patterns within a family with two siblings having hyperdiploid childhood B-ALL and observed unusual localization of maternal recombination events. The mother of the family carries a rare PRDM9 allele, potentially explaining the unusual patterns found. From exomes sequenced in 44 additional parents of children affected with B-ALL, we discovered a substantial and significant excess of rare allelic forms of PRDM9. The rare PRDM9 alleles are transmitted to the affected children in half the cases; nonetheless there remains a significant excess of rare alleles among patients relative to controls. We successfully replicated this latter observation in an independent cohort of 50 children with B-ALL, where we found an excess of rare PRDM9 alleles in aneuploid and infant B-ALL patients. PRDM9 variability in humans is thought to influence genomic instability, and these data support a potential role for PRDM9 variation in risk of acquiring aneuploidies or genomic rearrangements associated with childhood leukemogenesis.


Assuntos
Alelos , Histona-Lisina N-Metiltransferase/genética , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Troca Genética , Exoma , Feminino , Frequência do Gene , Rearranjo Gênico , Instabilidade Genômica , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Lactente , Masculino , Meiose , Análise em Microsséries , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA , Translocação Genética
19.
Genome Biol ; 12(11): 309, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22115312

RESUMO

A report on the 12th International Congress of Human Genetics, joint with the 61st annual American Society of Human Genetics conference, Montreal, Quebec, 11-15 October 2011.


Assuntos
Doenças Genéticas Inatas , Genética Médica , Neoplasias/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
20.
J Cell Sci ; 123(Pt 16): 2803-9, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20663922

RESUMO

Epithelial junctions are dynamically and functionally linked to the actin cytoskeleton, and their disassembly is a key event during physiological and pathological processes. We recently showed that epithelial disintegration facilitates transcriptional activation via Rac, G-actin, MAL (also known as MRTF) and serum response factor (SRF). Here, we investigate which specific component of the epithelial junction is essential for this MAL-SRF-mediated transcription. The Ca(2+)-dependent dissociation of polarised epithelial cells depleted of ZO proteins - which form adherens junctions (AJs) but completely lack tight junctions (TJs) - fully activated SRF. By contrast, AGS gastric adenocarcinoma epithelial cells, which form TJs but are deficient in E-cadherin, and therefore also in AJs, failed to activate SRF. The introduction of wild-type E-cadherin in AGS cells restored AJ formation and MAL-SRF inducibility. To gain further insight into the membrane-proximal signalling, AGS cells were stably transfected with E-cadherin-alpha-catenin fusions. Despite restored formation of cell-cell contacts containing the nectin-afadin complex and p120-catenin, these cells did not activate SRF upon junction dissociation, suggesting that signal transmission depends on the C-terminal tail of E-cadherin. We conclude that the dissociation of intercellular E-cadherin interactions from AJs, and signals originating from the C-terminal region covering the beta-catenin-binding site of E-cadherin, are essential for transcriptional activation via Rac, MAL and SRF, whereas TJs are not involved.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Células Epiteliais/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Junções Aderentes/genética , Animais , Caderinas/genética , Linhagem Celular , Proteínas de Ligação a DNA , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Expressão Gênica , Humanos , Camundongos , Proteínas de Fusão Oncogênica , Fator de Resposta Sérica/genética , Junções Íntimas/genética , Junções Íntimas/metabolismo , Transativadores/genética , Transcrição Gênica , Transfecção , alfa Catenina/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...